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Singular Spectrum Analysis
Singular Spectrum Analysis (SSA), introduced in the seminal work of Broomhead and 
King (1986), is an increasingly popular extension of Principal Component Analysis 
(Jolliffe, 2002; Golyandina and Zhigljavsky, 2013), suited for data sets on which the 
dependence constraint is not fulfilled

The core idea of singular spectrum analysis lies in the decomposition of the series of 
interest into several building blocks that can be classified as trends, oscillatory, or noise 
components

SSA is a non-parametric approach for analyzing time series data that 
incorporates elements of (Golyandina et al., 2001)

classical time series analysis,
multivariate statistics, and
matrix algebra.

The main assumption behind Basic SSA is that the time series can be represented as a 
sum of different components such as trend (which we define as any slowly varying 

series), modulated periodicities, and noise.
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SSA – The four steps

Basic SSA (Golyandina et al., 2001) performs four steps:

Stage 1: decomposition

1. Embedding

2. Singular Value Decomposition (SVD)

Stage 2: reconstruction

3. Grouping

4. Diagonal Averaging
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SSA – The four steps

The first step – Embedding

Let 𝒚 = 𝑦1 … 𝑦𝑛
′

The window length, 𝐿, is such that 1 < 𝐿 < 𝑛

𝐾 = 𝑛 − 𝐿 + 1 lagged vectors of length 𝐿 can be obtained:

𝒀𝑖 = 𝑦𝑖 𝑦𝑖+1 … 𝑦𝑖+𝐿−1
′ for 𝑖 = 1, … , 𝐾

The trajectory matrix is defined as follows

𝒀 = 𝒀1 … 𝒀𝐾
′ =

𝑦1 𝑦2

𝑦2 𝑦3
⋯

𝑦𝑘

𝑦𝑘+1

⋮ ⋱ ⋮
𝑦𝐿 𝑦𝐿+1 ⋯ 𝑦𝐿+(𝐾−1)
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Singular Value Decomposition
We decompose the matrix 𝑿, 𝑟𝑎𝑛𝑘(𝑋) = 𝑟 as

𝑿 = 𝑼𝑫𝑽𝑻

where 𝑼 and 𝑽 have orthonormal columns and 𝑫 is diagonal; 𝑑1 ≥ 𝑑2 ≥ ⋯ ≥ 𝑑𝑝 ≥ 0. 

Columns of 𝑼 and 𝑽 are the left and right singular vectors. The diagonal of 𝑫 contains the 
𝑝 singular values.

The approximation minimizes the error ||𝑿 – 𝑿𝑘||𝐹 (Frobenius norm).

A low-rank approximation of 𝑿 using only 𝑘 factors can be written as:
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SSA – The four steps

The second step – Singular Value Decomposition (SVD)

At the second step we perform the SVD of the trajectory matrix 𝒀. Considering 𝑑 =
𝑟𝑎𝑛𝑘(𝑌𝑌’), we can rewrite the trajectory matrix into a sum of rank-one bi-dimensional 
matrices:

𝒀 = ෍

𝑖=1

𝑑

𝒀𝑖 = ෍

𝑖=1

𝑑

λ𝑖 𝑼𝑖 𝑽𝑖
′

where λ𝑖, 𝑼𝑖 and 𝑽𝑖, are the eigenvalues, the left and right singular vectors, 
respectively.

The collection (λ𝑖, 𝑼𝑖, 𝑽𝑖) is called the i-th eigentriple of the SVD of matrix 𝑺 = 𝒀𝒀’; and 
the similarities between this equation and the Karhunen-Loève decomposition are 
obvious.
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SSA – The four steps

The third step – Grouping

In the grouping step, the selection of the 𝑚 principal components takes place. Let 𝐼 =
1, … , 𝑚, and 𝐼𝑐 = 𝑚 + 1, … , 𝑑, 𝑑 = 𝑟𝑎𝑛𝑘(𝒀𝒀’)

The point here is to choose the first 𝑚 leading eigentriples associated to the signal and 
exclude the remaining 𝑑 − 𝑚 associated to the noise. I.e. we search for a 'suitable' 
selection of the set 𝐼, which allows us to disentangle the series 𝒀 into

𝒀 = ෍

𝑖∈𝐼

λ𝑖 𝑼𝑖 𝑽𝑖
′ + 𝜀

where 𝜀 denotes an error term, and the remainder represents the signal.
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SSA – The four steps

The fourth step – Diagonal Averaging

Formally, consider the linear space 𝑀𝐿,𝐾, formed by the collection of all the 𝐿 × 𝐾

matrices, and let {ℎ𝑙}𝑙=1
𝑛

denote the canonical basis of 𝐼𝑅𝑛; Let 𝑿 = [𝑥𝑖,𝑗] ∈ 𝑀𝐿,𝐾;

The diagonal averaging procedure is hence carried on by the mapping ഥ𝐷: 𝑀𝐿,𝐾 → 𝐼𝑅𝑛, 
defiled as 

ഥ𝐷 𝑿 = ෍

𝑤=2

𝐾+1

𝒉𝑤−1 ෍

(𝑖,𝑗)∈𝐴𝑤

𝑥𝑖,𝑗

|𝐴𝑤|

where 𝐴𝑤 = i, j : i + j = w ; i = 1, … , L, j = 1, … , K, and |. | is the cardinal operator.

We are now able to write the signal component of the series through the diagonal 
averaging procedure described above:

෥𝒚 = ഥ𝐷 ෍

𝑖∈𝐼

λ𝑖 𝑼𝑖 𝑽𝑖
′ .
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SSA – The four steps

The fourth step – Diagonal Averaging

The central idea in this step is the reconstruction of the deterministic component of 
the series--the signal;

A natural way to do this is to transfigure the matrix 𝒀 − 𝜺 obtained in the previous step 
into a Hankel matrix; 

The point here is to reverse the process done so far, returning to a reconstructed 
variant of the trajectory matrix, and thus the signal component of the series. An 
optimal way to do this is to average over all the elements of the several antidiagonals.

𝑦1,1 𝑦1,2

𝑦2,1 𝑦2,2
⋯

𝑦1,𝑘

𝑦2,𝑘

⋮ ⋱ ⋮
𝑦𝐿,1 𝑦𝐿,2 ⋯ 𝑦𝐿,𝑘

 →  

𝑦1,1

Τ(𝑦2,1 + 𝑦2,1) 2

⋮
𝑦𝐿,𝑘
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SSA – Parameter selection

Two parameters have to be decided by the analyst:

The window lenght, 𝐿;

the number of singular values, 𝑟, to be selected for filtering/reconstruct the time series.

Choosing improper values for the parameters 𝐿 and/or 𝑟 yields incomplete 
reconstruction and misleading results when doing forecasting.
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SSA – Parameter selection

Window length 𝑳

Considering theoretical results for the structure of the trajectory matrix and separability, 
it seems mostly suitable to proposed 𝐿 close as half of the time series length and 
proportional to the number of observations per period (e.g. proportional to 12 for 
monthly time series), which does not guaranteed the best predictions;

This will yield a more detailed decomposition of the time series, however it is always 
better to repeat the SSA analysis several times using different values of 𝐿 (Golyandina
and Zhigljavsky, 2013).
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SSA – Parameter selection

Number of eigentriples 𝒓

SSA decomposition of the series 𝑌𝑇 can only be successful if the resulting additive 
components of the series are approximately separable from each other. The w-
correlation is a natural measure of dependence between two series:

𝜌 12
(𝑤)

=
𝑌 𝑇

(1)
, 𝑌 𝑇

(2)

𝑤

𝑌 𝑇
(1)

𝑤
× 𝑌 𝑇

(2)

𝑤

,

where 𝑌 𝑇
(𝑖)

𝑤
= 𝑌 𝑇

(𝑖)
, 𝑌 𝑇

(𝑖)

𝑤
; 𝑌 𝑇

(𝑖)
, 𝑌 𝑇

(𝑗)

𝑤
= σ𝑘=1

𝑇 𝑤𝑘 𝑦𝑘
𝑖 𝑦 𝑘

𝑗
, 𝑖, 𝑗 = 1,2, and 𝑤𝑘 =

min 𝑘, 𝐿, 𝑇 − 𝑘 .

If two reconstructed components have (near) zero w-correlation it means that these two 
components are separable. Large values of w-correlations between reconstructed 
components indicate that the components should possibly be gathered into one group and 
correspond to the same (signal or noise) component in SSA decomposition.
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SSA – Parameter selection
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SSA – Forecasting

The basic requirement to make SSA forecasting is that the time series satisfies a linear 
recurrent formula (LRF). Recall that a time series 𝑌𝑇 = (𝑦1, … , 𝑦𝑇) satisfies LRF of order 
𝑑 if

𝑦𝑡 = 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2 + ⋯ + 𝑎𝑑𝑦𝑡−𝑑, 𝑡 = 𝑑 + 1, … , 𝑇.

The time series governed by LRFs admits a natural recurrent continuation because each 
term of such a series is equal to a linear combination of several (𝑑) preceding terms. The 
coefficients of this linear combination can be used for out-of-sample predictions.

Although there are several versions of univariate SSA forecasting algorithms the two of 
the most widely used are: the Recurrent SSA (RSSA, Danilov, 1997a, b) and the Vector 
SSA (VSSA, Nekrutkin, 1999).
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SSA – Forecasting

Essentially, the method relies on the presumption that we are able to write the i-th
observation 𝑦𝑖 as a linear combination of the preceding (𝐿 − 1) observations.

We are then faced with the question: What coefficients should we use in this linear 
recurrent formula?

Assuming that 𝑈𝑗
𝛻 denotes the vector of the first 𝐿 − 1 components of the eigenvector 

𝑈𝑗, 𝜋𝑗 is the last component of 𝑈𝑗 , 𝑗 = 1, … , 𝑟, and 𝑟 the number of eigenvalues used for 

reconstruction, we can define the coefficient vector 𝒂 as

𝒂𝑇 = 𝑎𝐿−1, … , 𝑎1 =
1

1 − υ2 ෍

𝑗=1

𝑟

𝜋𝑗 𝑈𝑗
𝛻 ,

where υ2 = σ𝑗=1
𝑟 𝜋𝑗

2 .
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SSA – Forecasting

Recurrent SSA forecast algorithm

The 1-step-ahead out-of-sample forecast proposed by the method is then given by the 
following linear combination of the last (𝐿 − 1) reconstructed values of the series

Ԧ𝑦𝑛+1 = ෍

𝑖=1

𝐿−1

𝑎𝑖 ෤𝑦𝑛−𝑖

In general we have that for further steps-ahead, the out-of-sample forecasts are given by

Ԧ𝑦𝑛+2 = 𝑎1 Ԧ𝑦𝑛+1 + ෍

𝑖=2

𝐿−1

𝑎𝑖 ෤𝑦𝑛−𝑖

⋮

Ԧ𝑦𝑛+(𝐿−1) = ෍

𝑖=2

𝐿−1

𝑎𝑖 Ԧ𝑦𝑛−𝑖
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Limitations of SSA

The Era of Big Data has brought very long and contaminated time series. 
Although SSA have provided advantages over traditional methods, the 
computational time needed for the analysis of long time series and the lack of 
robustness against outliers might make it unappropriated.

If the length of the time series is very large then the conventional software 
performing SVD (most time-consuming step of SSA) may be computationally 
costly. 

Alternative: Randomized SSA (Rodrigues et al., 2018a)

If the data is contaminated with outlying observations, the standard SSA is 
likely to led to erroneous and inadequate results for model fit and forecasting.

Alternative: Robust SSA (Rodrigues et al. 2018b; Rodrigues et al. 2020, Kezemi and
Rodrigues 2023)



19/39

Outline

1. Introduction and background

2. Singular Spectrum Analysis
SSA – the four steps

SSA – parameter selection

SSA forecasting

3. Robust SSA
SSA vs. Robust SSA

4. Concluding Remarks



20/39

Robust SSA

The proposed robust SSA is to be an alternative to SSA for contaminated time series 
without losing the quality of the analysis.

In this new algorithm, the SVD in step two is replaced by six alternatives for robust 
SVD/PCA:

Stage 1: decomposition

• Embedding

– Robust SVD (Hawkins, et al., 2001; L1 norm); 

– Robust regularized SVD (2 algorithms; Zhang et al., 2013); 

– Robust PCA algorithm (Hubert et al., 2005); 

– Robust PCA based on the grid algorithm and projection pursuit (Croux and Ruiz-
Gazen, 2005); 

– Robust PCA based on a robust covariance matrix (Todorov et al., 1994)

Stage 2: reconstruction

• Grouping

• Diagonal Averaging
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SSA vs. Robust SSA – Simulation study

Synthetic data

1. 𝑓 𝑡 = 𝑡 × exp
4𝑡

200
× sin

2𝜋𝑡

15
+ 𝜀; 𝑡 = 1, … , 200; 𝜀~𝑁(0, 1)

2. 𝑓 𝑡 = exp 0.02𝑡 + 0.5 × sin
2𝜋𝑡

5
+ 𝜀; 𝑡 = 1, … , 100; 𝜀~𝑁(0, 0.1)

3. 𝑓 𝑡 = cos 2𝜋 × 𝑤 × 𝑡 + 𝜑 + 𝜀; 𝑡 = 1, … , 100; 𝜀~𝑁 0, 0.01 ; 𝑤 =
3

8
; 𝜑 =

𝜋

8

4. 𝑓 𝑡 = log 𝛼 × 𝑡 cos 2𝜋 × 𝑤 × 𝑡 + 𝜑 + 𝜀; 𝑡 = 1, … , 100; 𝜀~𝑁 0, 0.1 ; 𝑤 =
1

4
; 𝛼 =

1

30
; 𝜑 =

𝜋

8
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SSA vs. Robust SSA – Simulation study

Contamination for the synthetic data

Magnitude increase: 2% and 5% of the time points 𝑦𝑖 are randomly chosen to be replaced by 1.5 × 𝑦𝑖, by 2.0 ×
𝑦𝑖 , and by 3.0 × 𝑦𝑖 , i.e., the time point magnitude of 𝑦𝑖 is increased by a factor of 1.5, 2.0 and 3.0, respectively, 
resulting in three different contamination schemes. This is applied to the Simulation 1 and to the Simulation 2

Additive outliers: 2%, 5% and 10% of the time points 𝑦𝑖 are randomly chosen to be replaced by 2 + 𝑦𝑖 , by 5 + 𝑦𝑖

and by 10 + 𝑦𝑖 , i.e., the values of 𝑦𝑖 are increased by a constant value of 2, 5 and 10, respectively, resulting in 
three different contamination schemes. This is applied to the Simulation 3 and to the Simulation 4
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SSA vs. Robust SSA – Simulation study – Model fit
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SSA vs. Robust SSA – Simulation study – Model fit
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SSA vs. Robust SSA – Simulation study – Model forecasting
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SSA vs. Robust SSA – USAccDeaths
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SSA vs. Robust SSA – USAccDeaths
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SSA vs. Robust SSA – Model fit
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SSA vs. Robust SSA – Model forecast
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Concluding Remarks

SSA is a non-parametric approach for analyzing time series data which 

incorporates elements of: (i) classical time series analysis; (ii) multivariate 

statistics; and (iii) matrix algebra

Although SSA have provided advantages over traditional methods, the results 

might be inadequate due to data contamination with outlying observations;

The robust SSA proposed here performs well when the data is contaminated

with outlying observations.



Thank you for your attention!

Questions/Remarks/Suggestions?
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